Fields

Define the fields you want to generate. How to use Fakery?

Options

Preview

This is the data that was generated.

ipipv6ipv4
255.184.238.026f3:5284:87e8:ebc9:6fb4:9d50:bee9:ac93240.50.199.204
fb62:fbdd:dc1c:0631:de2d:9ef9:b4f6:63fbc900:adfe:a669:b421:9ad2:6d62:2b01:ee4e67.76.125.149
144.146.157.37fc5f:52b9:efa9:b1ab:0e3b:be0c:ddb3:93db96.101.137.42
e77c:aef2:dfde:a77a:57da:9df0:ead1:2be197ce:885a:dac6:0bd3:7cb0:df7a:dada:05ec176.141.255.17
120.35.190.2384fa1:5aba:4e1f:b230:8020:b52c:6b5c:fc6259.71.23.149
f9c8:0bb6:5fbd:89ca:a9c9:3713:2e0e:2b4df0ce:0216:f7c6:4153:a34e:c8f1:ca56:a4df212.228.40.194
166.17.10.124bdac:a6bf:2c38:bc4a:eea5:21a8:4d14:2a3191.66.24.206
49.238.163.147bced:571a:abaa:d3ef:095a:dae8:eec4:e0ee99.75.124.42
0c9e:be88:df03:7212:fb00:aefc:70a3:27b2dbb7:6e7c:dd5c:0dfa:9c7b:c62a:ed60:ed4963.206.221.80
228.208.147.13944bc:d110:91e8:ec0d:fb85:f1d3:c4c9:d76f150.178.192.19
0abf:dd07:5ea9:7859:08b6:2dc9:3f9e:f469074b:0ded:beb5:056c:bbcb:4c1a:0b9a:0c1a207.87.162.17
8f15:f036:bdd1:fec4:3bad:7a4c:dc63:ebea5429:4aa7:a04b:5ec1:93dd:572d:bba4:34de139.39.167.130
252.192.37.561bdb:f067:8d1c:7b0d:de4c:dc72:1eff:ad8b180.8.149.197
a656:54de:7bbb:9db1:f96f:37dc:b9ff:e4ffcebb:2a7d:0b3c:ae06:8fcb:fafa:4c9c:c5fa52.70.63.57
165.192.235.11641db:a4fb:66a0:4d1c:38ba:bbdb:4fab:50cf33.119.95.242
56.129.68.1771a97:2bd1:b8fa:aa7e:c69b:ced0:3a1d:0e1c117.146.29.92
245.193.252.1018ac9:f9ca:ea1b:f8bd:f0eb:02fd:f0db:206e198.231.227.203
ef31:3d4c:dfdc:fcfa:a5ef:8c5e:3a2d:bd3c5ecc:66ff:5bbb:6ae2:8e90:b5ec:06fa:de03133.78.83.227
dcbf:59dd:a670:dc46:cbce:b935:e81e:decc8ee5:2185:7633:cd29:eb34:9f35:dca7:816513.170.35.127
b33c:cef2:b9d3:f6da:dd0f:2411:9d87:fd3ff9a4:c3dd:e1a7:0f7a:a4ac:a9ad:3702:a67f252.42.56.118
162.134.9.1935ad2:360b:feda:7280:cbeb:90fe:ffa9:ce2e206.1.26.124
219.144.212.159eaeb:c569:cbec:75c0:45a5:6db5:9bb8:704c196.115.79.249
1a34:44b4:53a8:a042:eeeb:f135:f4de:efbc16ac:a9de:2f0a:128f:b384:e9b8:937a:741e114.193.231.53
dbaf:e6de:60a7:e19e:b71b:ca4a:8164:11dd8fb9:ac24:4f1c:bc5d:7d2d:bd2b:fb3f:cf0e201.17.48.136
ca83:5c94:cacf:b35c:f0ec:7cf8:ea4f:aff6902e:5c5a:cbbf:0ba8:9a3a:fdd8:6f10:fb7d185.61.134.30
56.91.77.232d3b4:6432:6dde:70aa:91cd:9d77:e546:ad68160.180.224.140
115.200.118.1162ee2:292e:3dda:fbea:8ca1:ecbe:eb14:2ca5246.179.145.138
ecdf:c30d:fc11:79ec:00c1:c99c:5cbd:ab2cead7:a5ce:9df1:88bb:4dfe:642c:320f:f3c0203.3.129.55
df1b:683e:e337:63f8:e5c8:bf27:3f9d:b86c5da5:8ba9:07d7:0f15:5bd6:1bca:1c7d:b4ec63.229.141.114
ea69:def8:5105:99e6:7bba:3d7a:3cf3:f9fa50fa:5b9b:837e:15d3:f8db:e33c:3bb2:db4f118.241.109.86
177.41.169.87c5cc:cbe9:ad03:fbb6:4cce:bdf2:1a0f:fede0.38.120.163
ccae:9ed1:c6aa:c9e6:1af1:124e:9a22:dc1d6e1e:f4e1:8240:af71:baac:ba01:e071:509f97.38.120.153
98ab:eced:e755:9eb0:fe0c:18cf:e1ab:e0bc035d:7f2d:e9cf:7b4a:ab43:88a3:af1a:79dd179.135.222.104
68.76.18.1919c0d:68b9:f824:e3a0:ba3f:1c84:ba44:a76d55.176.4.99
68.97.241.16861c3:9072:9ea8:c7bc:6f4c:fffe:c0a1:aa67219.239.87.125
bad5:92d2:5568:7ac6:4aec:3f21:d254:87c3bb18:d1ef:b76a:bf7b:c5fa:69ee:7fb0:7ad1192.107.195.38
142.53.170.10e770:bfde:59ea:3b70:b204:d7a1:bd9b:fd39158.217.223.116
09d6:ecc5:e119:5b11:9ad6:1ba8:2fbb:c308a758:efef:deff:70d8:9e5c:eef5:1bde:fdda187.3.64.120
5bf1:b2bc:cdfb:c5b6:ed69:a1bd:146c:ddea1d8b:1dbc:46ad:9c62:e4ed:f5d2:83ac:cddf55.88.160.152
153.151.157.14016ab:ebb5:4eae:0979:e3ce:ced1:cad7:7d21184.14.112.134
240.150.248.954cb:e0e6:c0ef:9c16:ce4b:cafc:e5a6:e8d522.149.247.178
18.109.248.219a9b2:a61a:af9e:e697:f2eb:fdd4:3fa3:bfde59.204.45.157
185.82.137.208ed7a:a902:92f8:c4ec:6def:da41:356a:b470123.186.222.185
7cc3:9fdb:e9cc:48be:d16a:dddc:7bfb:dc1adc4a:c9e2:7a31:ddc1:ccd8:fecb:4d93:7cfb97.156.254.216
b321:98d2:fda9:5fce:e348:2a2c:9b2a:c9752ee0:ecc4:8ff7:4fb2:64cd:5c16:3015:7394180.229.33.223
f5a2:cfaa:7466:ef8b:a050:db88:64f9:4223ceaf:c557:dbeb:7c16:dfa9:af5d:df94:822a62.143.20.0
144.189.34.1576ef0:deeb:15d3:147c:ff1e:978b:9cdb:ea7c227.201.67.25
137.36.93.70dcf5:848e:bee2:8df5:8126:9e71:4ceb:f6d9191.128.138.141
8efc:d3f5:e10f:85ee:91a4:fb72:d8cb:a70c7bd8:efde:af3c:17bd:eefd:ffc9:da40:3a0b44.1.249.70
136.28.196.1821bcb:b9eb:e21a:6be6:aed9:cadd:fafc:361f18.110.3.29
424c:8fea:6767:a51e:dfb0:0a06:f0fd:ca973bc7:062e:cffb:ae8d:db98:7fca:5daf:bba7154.22.254.47
134.198.106.230b4ed:37ce:fbfe:0b16:0d68:1863:7dee:a46c128.115.164.239
107.194.112.218bc0d:b8e9:82d4:2fc6:9ddd:bef3:ad8d:74c7250.40.120.113
21.247.42.484dfa:c9dc:5ada:04be:c2fb:0755:431d:0fa111.65.71.92
e665:7ca8:5faa:bd07:7662:3e4b:eec4:ce7eb686:ccf4:a9d4:8e5a:cffe:faff:633d:2ee9234.15.236.126
119.29.206.35e8f:5ffc:f237:c35d:1e3e:ebd7:6bed:c89e119.216.161.135
215.3.24.67a04e:8c47:7b13:75f6:04f1:7d71:efd2:30dc186.232.112.220
7b08:b2b9:dae4:bdd7:9ccd:b3fa:f4b1:ccb3c368:3ef8:a95c:c1f6:101a:d84e:a3ca:ed2b21.172.160.131
245.22.132.94eec4:2dce:5fea:38ea:76d6:5d0d:ade5:fade176.0.223.121
e3ca:48ca:8ddb:0b1a:fedf:9a39:e40e:6a7ddcec:c1ee:eecf:88fd:38dc:67c9:fc57:3abc202.68.177.242
2.230.158.1226e0c:e1c4:ecdf:6d27:bbce:ed35:79b5:fcff238.17.242.182
84.100.160.12451e5:8c6d:eeeb:dc45:eaa0:aa4b:cc52:d8f5190.61.99.248
9d6c:81d2:c233:f2cb:30d5:fd3f:ed7f:c04eb6eb:8bbc:0a0e:d59e:edbf:c0bf:8cba:c5d7246.63.154.56
bbb5:1cbe:bbae:bb85:f806:eaed:864a:df3bbe54:69e8:dfbd:cd79:fd9a:6904:ffad:ade8185.60.13.99
feac:9fc6:cd48:ad66:acb1:a071:b318:7ff24ebb:2734:54a0:af3e:097f:e23e:ec2e:e8a9237.123.250.239
c7a4:cfda:ecef:af70:e5c0:c2dc:c0bc:2fbbd1af:9ffe:577e:e3bd:dc07:885e:66ab:faad93.71.149.224
5cad:284a:85be:8f40:dfd2:bbed:855e:fdf51aa2:ccb2:ec55:fe8f:5b5e:9b2b:9d19:c8ed29.179.6.47
c8d6:38c8:cba2:0333:e808:82d6:46f0:38b9dc52:a1a4:acdc:acec:92b8:e53a:b6dd:fb4f119.206.229.216
bfe9:cffe:e4eb:8f40:14a2:caf1:ef98:cdd4a9fc:edba:fb5c:c9e4:b2c3:c1dc:cca7:a14984.154.81.108
b0ef:dcf3:a3f5:03fd:3bd7:b5bb:5e4d:9ac897e9:70d4:fbeb:14ac:7bb7:632b:efe5:df26204.79.211.166
94c5:790b:caea:ec0d:db9d:0cff:bd7d:e7ced1e2:e2ce:3327:b0a5:af3b:c3db:cecd:f83612.195.133.61
5019:d19c:cbae:b29e:45c9:0ae8:cedd:d65d6bb1:fd4c:bc73:afbf:9c44:1e4f:54d2:d725245.232.174.127
fff9:7b0e:0b86:6276:5aae:ab7b:d5dd:26301d49:993a:be21:93e7:b5ea:dcbc:6d25:d4da151.60.221.138
ad55:3e0c:32cd:274d:0eee:549f:3f86:98a5992b:a131:9a5b:65e7:be40:ae7f:f748:cfb0128.171.64.160
11.120.160.251e256:eb7e:e666:d9cd:fffc:fe15:5e0b:b6e6138.225.175.32
162.242.71.253c58e:af41:abbf:8b3b:e9a2:6e9b:d4d5:f5ce209.61.232.59
246.101.72.1434ad1:8846:892a:eeaa:2d3c:f960:8427:d32d6.156.110.128
82.154.167.1384f0f:af90:fc4f:1c8a:f72e:4d97:dfa6:25d899.50.171.217
102.135.146.44f03a:f4fe:9b3b:587f:fbea:0afc:c78a:b4f8165.7.89.118
6bb1:0dce:65c3:ac9e:e157:fc57:e448:a5cbfcfc:96a9:ef9b:ba11:82ab:db29:afce:d90237.230.72.79
53.171.75.222ecab:8d46:987c:eb74:57ea:6751:e3f4:0a8d70.225.123.231
78.122.192.1886c81:619f:4c71:29f3:bae7:acab:acda:6dbc182.134.78.132
183.68.110.203bead:c2ca:9b9a:0c0e:3ebc:1aef:bc2e:1d88246.21.71.212
bdbd:c10c:de0f:ffc1:ef8d:68b9:d4c4:eb9cfcab:7ee8:bfd5:6b27:448f:c55f:dad0:891a190.45.75.87
216.96.170.169b1dc:b0ff:dd38:f3cf:edf6:fa46:1fef:edde65.68.243.236
173.208.197.46c2c4:fd3c:d36c:e74d:6c15:9bcf:c8de:7a97217.12.147.134
c6da:cde2:e032:dad0:adf2:6589:42b5:e0bf4d48:d008:29de:964d:ee64:cbdb:a2cd:b0f066.15.102.123
e58e:18c2:b17f:fbec:5e40:c3ce:7dcc:3440ae3a:5df0:0c0a:697a:7ab2:0a7a:ed3e:c1e329.159.53.146
382a:dd63:ffb0:0284:0b3a:ae23:030b:dabafdae:95a5:88ba:0e6c:f549:0ddc:58a2:5f91117.221.215.221
fea3:fc8b:b2b0:336b:7a81:c40c:e54d:919e7f89:3c1b:cfdd:3258:6ecf:33c6:c27e:7cfd141.178.167.199
119.165.89.15463b7:aaa2:07d5:bca7:4478:bfc1:d39f:da8d223.225.65.43
f3eb:3c54:c47c:f61e:3ef4:faed:dd27:3c1ab9d2:bdbc:42c7:4d1c:9bc8:ff21:6220:8f6e131.175.89.149
ebac:e2ac:54fd:90e2:6868:b6f2:9246:aef4dad5:d0a0:032a:bada:677a:8bdc:57e0:113a236.69.88.123
45cf:b2b1:6bba:0066:756c:1fb9:bce9:a1dc6038:2fa9:ad3a:9cdb:23b2:ddde:fef8:c2df107.15.167.94
9eb6:fdb7:a7fd:d3ea:1e58:64ea:dcdc:4c0055ff:a2ba:ebf2:7e5a:a4fd:e33e:ca9c:9dd262.78.138.150
8bec:cb4e:de81:edd7:bab9:b27b:218f:4c0f6a3b:de1c:4af8:ed53:0af1:f765:a3dd:86d4185.240.244.28
219.239.237.122ce4a:3b88:f9bb:dfbe:6fe3:b5df:5add:7d2577.86.191.126
80.35.139.85f44b:a8fa:7d0a:b1bf:15df:80e4:8f1f:5576192.190.47.66
161.223.59.136f220:afef:5bfa:feeb:8055:5f7d:bed3:8e4d167.22.14.49
67ad:cdcd:4d9d:3eed:abbc:9a2a:762f:b8b25a4f:5961:8e6e:e40a:70ad:efb1:5f5f:43d260.238.194.176

Frequently Asked Questions

What is Fakery?

Fakery is a free online tool for generating fake data. It supports a wide variety of data types and formats, including JSON, CSV and HTML.

How to Use Fakery?

To use Fakery, simply select the data types you want to generate from the dropdown. You can customize the data types by clicking the options button next to each data type. You can rename the fields by setting the field name input next to each data type.

The options panel allows you to customize the file format, the number of records, and the seed used to generate the data. You can copy or download the generated data by clicking the Copy or Download buttons.

What Data Can I Generate?

Fakery supports a wide variety of data types and formats in categories such as:

  • Airlines
  • Animals
  • Colors
  • Commerce
  • Companies
  • Databases
  • Datatypes
  • Dates
  • Finances
  • Git
  • Hacker
  • Helpers
  • Images
  • Internet
  • Locations
  • Lorem
  • Music
  • Numbers
  • People
  • Phone numbers
  • Random
  • Science
  • Strings
  • System
  • Vehicles
  • Words
  • Utilities

Check out the examples page for inspiration.

Why use Fakery?

There are plenty of data mocking libraries out there requiring you to write code. Fakery.dev is a free online tool that allows you to generate data easily, without having to add any unnecessary dependencies to your project or write any code.

Who is Fakery For?

Fakery is for anyone who needs to generate fake data for testing their applications. It's especially useful for frontend developers who need to generate data for their frontend applications.

Why is Realistic Data Important?

Data is the lifeblood of your application. Without realistic data, your application might not look or feel right, or it might not behave as expected. Using realistic placeholder data helps you find view your application as your users would, and helps you find and fix bugs before they make it to production.

Do You Have an API?

We're working on it! We'll be releasing an API soon that will allow you to generate data programmatically.

How is the data generated?

Fakery uses Faker.js under the hood to generate most of the data. Faker.js is a popular mock data library. It's used by many other libraries and frameworks, including Ruby on Rails, Laravel, and Django.

I Have a Feature Request or Bug Report

We'd love to hear from you! Please email us at hi@fakery.dev.